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Abstract: We analyzed the influence of rainfall and temperature patterns op Gambel’s quail (Callipepla gam-
belii) to better understand variability in call counts and reproduction. Based on data collected in Arizona during
1978-96, midwinter (Dec—Jan) precipitation invoked a stronger calling response than early-winter (Oct-Nov)
or late-winter (Feb—Mar) rainfall. Reproductive failure (<1 juv/ad) was associated with low rainfall in October—
March and high mean daily temperatures during June-July. Moderate production (1-2 juv/ad) occurred under
low rainfall in winter, if June—July temperatures were cool. For any rainfall pattern, higher temperatures in

July were associated with lower age ratios.
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Populations of quail in semiarid environ-
ments respond demographically to weather var-
iables, particularly seasonality and quantity of
precipitation. Populations tend to adapt to the
prevailing regional climates (Campbell et al.
1973), so the relation between weather vari-
ables and demography of quail differs among
regions. Generally, however, rainfall during key
periods directly or indirectly promotes produc-
tivity in semiarid environments (Lehmann 1953,
Swank and Gallizioli 1954, Gullion 1960, Fran-
cis 1970, Campbell et al. 1973, Botsford and
Brittnacher 1992). Properly timed rainfall may
also foster higher survival (Brown 1989).

An index of production (juv/ad) of Gambel’s
quail in Arizona increases with precipitation

I E-mail: cervidnut@aol.com
2 Present address: Box 714, Oracle, AZ 85623, USA.

during December—April (Swank and Gallizioli
1954). Calling activity, which apparently varies
with breeding density and intensity of the
breeding effort (Hungerford 1960), also pre-
dicts hunter success (Smith and Gallizioli 1965).
Variability in calling activity is associated with
variability in precipitation.

Despite general knowledge of the relation
between rainfall and the behavior and popula-
tion dynamics of Gambel’s quail, certain key
features of this relation remain unknown. Our
purpose was to determine how the pattern (tim-
ing, amount) of rainfall affects an index of pro-
duction (juv/ad) in Gambel’s quail. We also ex-
plored the effects that temperatures during the
brooding season had on production, because of
the possible effects of global climate change on
populations of quail (Guthery et al. 1999).
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STUDY AREA

Data for this study were collected from 1978
to 1996 near Oracle Junction in southcentral
Arizona, about 45 km north of Tucson in Pinal
County. Vegetation is characteristic of the Ari-
zona Upland subdivision of the Sonoran Desert
Scrub and Semidesert Grassland (Brown 1994).
Terrain is flat to gently rolling, and mean annual
rainfall at San Manuel, Arizona, (25 km east of
the study area) was 37.1 ¢cm (National Oceanic
and Atmospheric Administration 1996). Brown
et al. (1978) described the study area in detail.

METHODS

We established 2 standardized routes on the
study area: 1 on Freeman Road and another on
Willow Springs Road. We conducted call counts
along each route at 2-week intervals as de-
scribed by Smith and Gallizioki (1965), starting
the last week in March in each of 19 years
(1978-96). The analysis of call counts excluded
data from 1988 because these data were col-
lected differently and considered unreliable.

Each call count consisted of a 32-km survey
route. Beginning 15 min before sunrise, the ob-
server traveled along the route at 40 km/hr and
stopped every 1.6 km to count the number of
single-note calls of male Gambel’s quail during
a 3-min period. These “cow” calls are charac-
teristic of male Gambel’s quail in breeding con-
dition. The total number of calls heard along
the entire 32-km route yielded a call-count in-
dex. Call counts were not conducted if rain was
falling or wind velocity exceeded 12 km/hr at
any time during the survey. Each year, =3 call
counts were conducted on each route; if the
third count recorded the highest total calls, a
fourth was completed to reduce the possibility
of missing the peak in the calling period. The
dependent variable used in this study was the
mean of the second and third counts.

Check stations were established in both the
Freeman Road and Willow Springs Road sites
and operated during the opening weekend of
the quail season in October 1978-96. Until
1990, check stations were mandatory for all
hunters leaving the area. Since that time, check
stations were voluntary, but hunters rarely
passed without stopping. All Gambels quail
were aged as adults or juveniles via coloration
of the upper primary coverts (Brown 1989). Be-
cause the Freeman Road and Willow Springs
Road check stations were operated on the call-
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count routes, the birds checked were from the
same areas sampled with call counts. Willow
Springs and Freeman roads were the main ac-
cess to the study sites; hence, we could sample
most hunters and their harvest during the times
check stations were in operation. The mean
number of birds aged each year from 1978 to
1996 was 418 (range = 45-1,530) at Freeman
Road and 824 (range = 118-2,464) at Willow
Springs.

We used neural network (backpropagation)
modeling (Kosko 1992, Anderson 1995, Hagan
et al. 1996, Smith 1996) to explore the relation
between weather variables and an index to re-
production of Gambels quail (NeuralWorks
Professional II/Plus, Version 5.3). Neural mod-
els were developed to mimic the thought pro-
cesses of humans, and the terms used in neural
modeling may be similar to those used in neural
biology.

The type of neural network model used here,
called the backpropagation model, consists of
input nodes (= independent variables), hidden
nodes, and output nodes (= dependent vari-
ables), and deals inherently with nonlinear re-
lations. Although different architectures are
available for backpropagation models, all input
nodes are generally connected to all hidden
nodes, and all hidden nodes are connected to
all output nodes. The connections (synapses)
are bridged by linear models governed by syn-
aptic weights. Hidden nodes are also called pro-
cessing elements because they are loci for input
from input nodes, transformation of the input,
and output to the output nodes.

Backpropagation modeling is an iterative ap-
proach to finding the global minimum on a mul-
tidimensional error surface (the method cannot
guarantee that the global minimum is found).
Basically, a set of synaptic weights (analogous to
linear regression coefficients) for synaptic con-
nections between nodes is tested on a set of
data, and the unexplained error is calculated.
The weights are then adjusted according to
learning rules; adjustments take place such that
the unexplained error declines (a lower point is
found on the multidimensional error surface).
This process is repeated until the unexplained
error stabilizes or reaches an acceptable value.
A backpropagation model finds an approxima-
tion for some unknown function as the sum of
a series of terms. In this sense, neural models
are similar to series expansions (e.g., the Fou-
rier series and the Taylor series). Smith (1996)
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provides a readable explanation of backpropa-
gation modeling vis-a-vis traditional modeling
such as multiple regression.

The independent variables (input nodes)
were monthly records of temperature from the
Florence Station (40 km northwest of study
area) and records of rainfall from the San Ma-
nuel Station (National Oceanic and Atmospher-
ic Administration 1978-96). We used the data
from Freeman Road for training the networks
(finding synaptic weights that minimized error),
and we used the data from Willow Springs Road
for testing models developed from the Freeman
data. Training sessions involved 100,000 epochs
of 16 iterations. This statement means errors
accumulated over 16 iterations and synaptic
weights were adjusted 100,000 times. The test
data were not ideal, because the same indepen-
dent variables were used in the training and test
data. However, we had independent estimates
of the dependent variables (call-count index,
age ratios).

Our general approach was to experiment with
data from Freeman Road, going from more
complex (more input nodes and hidden nodes)
to less complex models until we found a less
complex model that explained >25% of the var-
iation in the call-count index or the age ratio.
For call-count modeling, we started with 6 in-
put nodes (monthly rainfall during Oct-Mar)
and 6 hidden nodes. We started with 9 input
(monthly rainfall and mean daily temperatures
in May, Jun, Jul) and 6 hidden nodes for the
age-ratio model. Simplification of the models
was limited by our objective, which was to de-
termine the effects of rainfall patterns on an
index to reproduction (i.e., if models became
too simple, we would lose the ability to analyze
for pattern effects).

The call-count index for Willow Springs was
related to the index for Freeman Road accord-
ing to

Y = 4427 + 04X,

where Y = the Willow Springs index and X =
the Freeman index (r = 0.70, P < 0.001, n =
19). Therefore, predictions of Willow Springs
counts based on a neural network trained with
data from Freeman Road were guaranteed to
be erroneous because the intercept differed
from zero and the slope differed from 1. We
adjusted the Willow Springs counts to the Free-
man standard by solving for X in the above
equation (i.e., X = Y/0.4 — 442.7). This variable
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(X) was used in testing the Freeman model on
the data from Willow Springs. Adjustments
were not necessary for the age ratio models be-
cause age ratios are standardized as juveniles/
adults (JPA). Moreover, the age ratios between
areas were related, with intercept = 0 and slope
= 1 (P > 0.05) when an outlier (discussed later)
was removed from the dataset.

We pooled the data from Freeman and Wil-
low Springs to develop a general neural network
model for the age ratios after validating the
Freeman model on data from Willow Springs.
This pooled model and the model developed for
the call-count index were used to predict call
counts and age ratios under a comprehensive
dataset created to provide a general perspective
of the response of Gambel’s quail to weather
variables (essentially, we modeled with the neu-
ral models). The created dataset allowed us to
explore model predictions (response surface in
hyperspace) by holding certain independent
variables constant and manipulating others. In
this manner, we could examine the influence of
rainfall patterns on ‘(’:a.lling activity and produc-
tion. We constrained the arbitrary dataset with-
in about 2 standard deviations of mean weather
variables with means estimated over 1978-96.
All means are presented = SD.

RESULTS
Predicting Call Counts

For further testing, we selected a neural net-
work model consisting of 3 input nodes (total
rainfall in 3 2-month periods: Oct-Nov, Dec—
Jan, and Feb-Mar), 2 hidden nodes, and 1 out-
put node (call-count index). This model ex-
plained 73% (P < 0.001) of the variation in the
data from Freeman Road and 30% (P < 0.001)
of the variation in the adjusted data from Wil-
low Springs Road when applied to those data
(Fig. 1). The empirical data revealed a pooled
mean of 1,976 = 1,027 calls/route, whereas the
mean of model predictions was 1,705 * 652
calls/route.

The neural model predicted a marked re-
sponse of calling males to rainfall pattern. Anal-
ysis of model predictions (Table 1) suggested
responses of about 15-25 calls/em for October—
November precipitation, 90-100 calls/cm for
December-January precipitation, and 50-65
calls/em for February—March precipitation.
These ranges include drier and wetter years.
Thus, in terms of the stimulating effects of a

e
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Fig. 1. Comparisons of neural network predictions of a call-
count index of Gambel’s quail and actual counts in southcen-
tral Arizona, 1978-96. The top figure shows Freeman Road
predictions for a model trained with Freeman Road data, and
the bottom figure shows Willow Springs predictions for the
Freeman-trained model. All observations would fall on the di-
agonal line if the model predicted the call-count index perfectly.

fixed quantity of precipitation on calling behav-
ior, December—January > February-March >
October—November.

Model predictions also showed that calling
intensity did not increase in proportion to rain-
fall. For example, doubling (2X) October-No-
vember rainfall (holding other months at zero)
resulted in a 1.17X increase in the predicted
call-count index, whereas doubling December—
January rainfall produced a 1.66X increase.
Doubling February~March rainfall produced a
1.44X increase. »

Predicting Age Ratios

A neural model with 6 input nodes (total
rainfall for Oct-Nov, Dec—Jan, Feb—Mar; mean
daily temperature for May, Jun, Jul) explained
30.1% (P = 0.002) of the variation in age ratios
from Freeman Road; the Freeman model ex-
plained 25% (P = 0.029) of the variation in age
ratios from Willow Springs (Fig. 2). The mean
age ratio pooled over the Freeman and Willow
Springs study sites was 2.0 * 1.24 JPA, whereas
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Table 1. Neural model predictions of call-count indices for
Gambel's quail in response to rainfall patterns based on data
coliected in southcentral Arizona, 1978-96.

Precipitation (cm}

Predicted Intensity

Oct-Nov Dec-Jan Feb-Mar calls index*
0.0 0.0 0.0 498 0.14
0.0 0.0 6.3 755 0.21
0.0 0.0 12.7 1,084 0.30
0.0 0.0 19.0 1,480 0.41
0.0 6.3 0.0 949 0.26
0.0 12.7 0.0 1,572 0.43
0.0 19.0 0.0 2,284 0.63
6.3 0.0 0.0 590 0.16
12.7 0.0 0.0 691 0.19
19.0 0.0 0.0 802 0.22
6.3 6.3 6.3 1,476 0.41
12.7 12.7 12.7 2,765 0.76
19.0 19.0 19.0 3,623 1.00

“ Estimated call-count iudex divided by the maximum estimated call-
count index (3,623).

the mean derived from model predictions was
2.0 = 0.79 JPA.

One observation on Freeman Road in 1991
(6.7 juv/ad) was 3.8 standard deviations from
the mean, indicating an unlikely ratio. For that
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Fig. 2. Comparisons of neural network predictions of age ra-
tios (juv/ad) of Gambel's quail and actual ratios in southcentral
Arizona, 1978-96. The top figure shows Freeman Road pre-
dictions for a model trained with Freeman Road data, and the
bottom figure shows Willow Springs predictions for the Free-
man-trained model. All observations would fall on the diagonal
line if the model predicted the age ratios perfectly.
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Fig. 3. Comparison of neural network predictions of age ra-
tios (juv/ad) of Gambel's quail and actual ratios in southcentral
Arizona, 1978-96. The neural model used to develop the pre-
dictions was trained on pooled data from Freeman Road and
Willow Springs with an outlier (6.7 juv/ad) deleted. All obser-
vations would fall on the diagonal line if the model predicted
age ratios perfectly.

year, rainfall in the October—March period was
34% more than the 30-year mean; however, the
age ratio at the Willow Springs check station
was 2.9 JPA that same year. This observation
added to total variability and reduced the pre-
dictive power of the neural model.

The pooled model (Freeman and Willow
Springs data) with the outlier (6.7 juv/ad) re-
moved explained 50% of the variation in age
ratios (P < 0.001; Fig. 3). With the outlier re-
moved, mean age ratios were 1.87 = 1.02 JPA
for the empirical data and 1.87 = 0.73 JPA for
the model predictions. The pooled model was
used to explore the effects of rainfall and tem-
perature patterns on production by Gambel’s
quail. With May—July temperatures held con-
stant, the simulations indicated precipitation
pattern affected relative production (Table 2).
The neural model predictions indicated a gain
of about 0.05-0.07 JPA/cm for precipitation in
October—November and February—March; the
estimated rate for December—January was
about 0.09-0.11 JPA/cm. As was the case with
call counts, rains in midwinter seemed to be
more stimulating to production than rains in
early or late winter.

The pooled age ratic model indicated vari-
able effects of mean daily temperature on Gam-
bel’s quail production (Table 3). We held May
temperatures constant at 23.9°C in this analysis.
With July temperatures held constant, increas-
ing temperatures in June within the range of
26.7-32.2°C had little effect on neural model
predictions. When June temperatures were
held constant, however, relative production de-
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Table 2. Neural model predictions of age ratios (juv/ad) of
Gambel's quail in response to rainfall patterns based on data
collected in southcentral Arizona, 1978-96. Mean daily tem-
peratures were held constant at 23.9°C in May, 29.4°C in June,
and 32.2°C in July for these simulations.

Total precipitation (em) for 2 inonths

Predicted

Oct—Mar Dec—[an Feb-Mar age ratio
0.0 0.0 0.0 0.5
0.0 0.0 6.3 0.8
0.0 0.0 12.7 1.1
0.0 6.3 0.0 1.0
0.0 6.3 6.3 1.4
0.0 12.7 0.0 1.7
0.0 12.7 12.7 2.4
6.3 0.0 0.0 0.8
6.3 0.0 6.3 1.1
6.3 6.3 0.0 14
6.3 6.3 6.3 1.8
1275 0.0 0.0 12
12.7 0.0 12.7 1.9
12.7 12.7 0.0 2.5
12.7 12.7 127 3.2

clined at 0.18-0.25 JPA/°C within the range of
29.4-35.0°C in July..

Reproductive failore (<1 JPA) was associated
with years subject to low rainfall from October
to March and higher temperatures in July. The
suppressing effect of low rainfall was moderated
during cool years. For example, with no Octo-
ber—March rainfall, production was predicted to
be 1.1 JPA in a cool year (23.9°C in May, 26.7°C
in Jun, 29.4°C in Jul) compared to O JPA in a
hot year (23.9°C in May, 32.2°C in Jun, 35.0°C
in Jul).

The general pattern that emerged was a pos-
itive response to increasing precipitation and a

Table 3. Neural model predictions of age ratios (juv/ad) of
Gambel's quail in response to mean daily temperatures in
June and July and precipitation from October through March
based on data collected in southcentral Arizona, 1978-96.
Mean daily temperature in May was held constant at 23.9°C
for these simulations.

Precipitation tcm?* for each

Temperature (°C) 2-month period during Oct—Mar
June July 0.0 6.3 2.7
26.7 29.4 1.1 2.6 3.9
32.2 0.5 1.8 3.3
35.0 0.0 11 2.6
29.4 29.4 1.0 2.5 3.9
32.2 0.5 1.8 3.2
35.0 0.0 L1 2.5
32.2 294 1.0 2.5 3.8
32.2 0.4 1.7 3.2
35.0 0.0 1.0 2.5

+ For example. the column 6.3 indicates 6.3 em in Oct—Nov, Dec—Jan.
and Feb-Mar.

W
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negative response to increasing temperatures.
Good production (1.5-3.0 JPA) could occur in
years of moderate rainfall and cool tempera-
tures or in years of high temperatures and pro-
fuse rainfall. High reproduction (>3.0 JPA) was
associated with cooler years having higher rain-

fall.

DISCUSSION

To our knowledge, neural network modeling
has received limited application in wildlife ecol-
ogy (Recknagel et al. 1997, Maier et al. 1998,
Olson and Cochran 1998), although it is used
extensively in engineering and finance, among
other applications (Kosko 1992, Anderson 1995,
Smith 1996). Olson and Cochran (1998) re-
cently reported neural net models explained
more variation in tallgrass prairie biomass than
multiple regression models. Backpropagation
models such as we developed are subject to lim-
itations (Anderson 1995:276-277), 2 of which
are relevant to our work. First, there is a po-
tential problem with overfitting the data such
that generalization suffers. In other words, neu-
ral models can be constructed to fit training
data perfectly, in which case the models may be
of no value for general predictions. We ad-
dressed this problem by limiting the number of
hidden nodes to =3 and testing the models with
independent estimates of the dependent vari-
ables. Second, “a neural network may solve a
practical problem, but it can be difficult to un-
derstand how it solved it” (Anderson 1995:277),
meaning the process leading to neural predic-
tions is not readily apparent from the construc-
tion and parameterization of the model. We can
address this issue only by determining if model
predictions are biologically reasonable and con-
sistent with empirical results.

The neural predictions indicated that early
winter rain (Oct-Nov) weakly affected calling
behavior and age ratios. This prediction is plau-
sible because the effect of rain in the warm, dry
environment of Arizona rapidly wanes. The
models predicted a relatively strong influence
of mid- to late-winter rain, which is consistent
with the findings of Swank and Gallizioli (1954).
Also, highly variable calling intensity, as pre-
dicted (Table 1), is consistent with empirical es-
timates of 25-75% of males calling (Hungerford
1964).

High temperatures apparently do not limit
the overall distribution of Gambel’s quail (Gul-
lion 1960), but Goldstein (1984) reported that
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Gambel’s quail in the Colorado Desert exist
near the upper lethal limit of thermal tolerance.
During the summer, the thermal environment
was the most important factor shaping the day-
time activity budgets of Gambels quail in his
study area. Goldstein (1984) also noted that the
thermal environment places greater constraints
on young chicks because of their smaller body
size.

We are not aware of any research on the ef-
fects of temperature on production by Gambel’s
quail. However, the suppressing effects of high
temperatures during the nesting and brood-
rearing season are documented for northern
bobwhites (Colinus virginianus; Stanford 1972;
Lehmann 1984:152-153; Forrester et al. 1998).
High temperatures late in the production sea-
son reduce the length of the laying period for
northern bobwhites (Klimstra and Roseberry
1975), which would reduce renesting activity.
Guthery (1997) speculated that temperatures
during the nesting season might be 1 of the ma-
jor factors explaining variability in northern
bobwhite production. Our findings on the in-
teractive effects of rainfall and temperature are
similar to those reported by Robinson and Bak-
er (1955) for northern bobwhites in Kansas.
Presumably, the same biophysical processes that
associate higher temperatures with lower pro-
duction in northern bobwhites could apply to
Gambels quail.

Predictions (call-count index, age ratios) of
the neural models appear generally consistent
with the empirical database on the relation be-
tween quail and weather variables (rainfall,
temperature). The biological mechanisms that
manifest these relations remain largely un-
known and are fertile subjects for future re-
search. In particular, more precise knowledge is
needed on the factors leading to low reproduc-
tive rates during hot, dry years and high repro-
ductive rates during cool, rainy years. These ef-
fects are assumed to be primarily nutrition
based (e.g., Hungerford 1964), but temperature
may make a significant contribution to variation
in production. Heat is a physiological stressor
that can inhibit laying hens, independent of nu-
trition. Negative effects of heat could manifest
in the proportion of hens that lay (Guthery et
al. 1988), staggered hatching within clutches
(Stanford 1972), length of the laying season
(Klimstra and Rosenberry 1975), and survival of
chicks.
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MANAGEMENT IMPLICATIONS

Our results provide several points of possible
use in the management of Gambel’s quail. We
demonstrated that weather variables explain a
large proportion of the variation in calling ac-
tivity of males (i.e., calling frequency is to some
extent independent of population size). There-
fore, call counts may give misleading informa-
tion on population status. Models that predict
calling behavior based on weather variables
could be used to standardize counts among
years; Robel et al. (1969) showed how models
may be used to standardize call counts of north-
ern bobwhites.

Although rainfall and temperatures are be-
yond management control, nutrition and tem-
peratures at quail level can be mediated
through cover management (planting, grazing,
brush management). Our results indicate man-
agement should attempt to foster cooler tem-
peratures at quail level through the nesting and
brood-rearing period. Finally, neural modeling
of call counts and age ratios provides a method
of understanding local variation in population
behavior based on readily available weather re-
cords. Understanding this variation could assist
state wildlife agencies in establishing harvest
regulations, explaining population dynamics and
providing interested publics with predictions of
quail abundance.
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